
Guidelines	for	creating	an	MD	: MR	character	

Author : Pospi (pospi@spadgos.com)
Revised: 21st September 2005

Contents

Explanation
Before you Begin
The Process

Modelling
Texturing
Putting it all Together

The Character Designer
Distribution
Credits

mailto:pospi@spadgos.com

Explanation

Welcome, artist type person!

This document is designed to show you all the necessary steps involved in making
a custom character for Marshmallow Duel : Mowbray’s Revenge. It includes a
much cut-down version of the mod for you to test things ingame (in fact, this is
probably based on code that’s at least 4 months old), as well as source files for
the character I will be going through so that you can learn by example.

MD:MR’s animation system is different to that used normally in UT2004. Our
characters are made up of static objects instead of a single mesh. Whilst this
means our characters cannot blend between joints, it does mean they can swap
different body parts in and out at will. The upshot of this is greater user
customisability, since players have the power to create unique characters by
combining pieces from many different models.

The material system our characters use is also unique, and allows players to
select any colour from the rainbow as their character colour. As artists, you
decide which parts of your character model to mask out for this custom colour, so
you have complete control over it.

Creating a MD:MR character basically involves some modelling, texturing and text
editing. There is no need to do any tedious rigging, weighting or animation for an
MD:MR character. Yay.

A character will consist of 4 files – a texture package (UTX), staticMesh package
(USX), script package (U) to point to the staticMeshes, and localisation file (INT)
to point to the script package.

Whilst I won’t go over the process in every conceivable detail, I will lay out the
basic instructions for each of these steps so that you know what to do. Basically,
this tutorial is for people who know how to model, skin and write some simple
text files.

Remember when designing your character that it will probably be used alongside
parts from other characters. Keep things modular, but don’t be afraid to try your
own thing.

Before you Begin

Included in this package is a file named ‘mduelCharDesigner.zip’. This is a very,
very cut-down version of the MD:MR mod, and exists only for you to use for
compiling and testing characters. It has no features other than the character
designer system, and will not work online or on a LAN. Bots will show up invisible,
so don’t go testing with bots either.

Basically, you can just extract this file to your UT2004 directory. It will create a
new folder called ‘mduelCharDesigner’ that contains all the data needed for you
to test and manage your character creations. When the full MD:MR is released,
your characters can be copied over and will work perfectly.

More on using this system is discussed towards the end of this document. For
now, you should just know that it exists. The tutorial assumes you have extracted
it to your UT2004 folder.

Modelling

This part of the tutorial is aimed at users of Lightwave, since Lightwave is the 3D
program most used for staticMesh creation in UT2004 (and also because it’s my
program of choice and the only 3D package I know anything about). However,
the instructions given are very general, and can be applied to Maya, 3DS Max or
whatever other bollocks you like to use (just kidding).

To create an MD:MR character, you will need to create a static mesh for each
element of their limbs. These meshes are then imported into UnrealEd as
staticMesh objects that can be used in the game. So, here’s the player’s skeleton
with its bones colour coded:

The red bones are the only ones you need to worry about. Each of these (except
for the weapon bone) needs a staticMesh attached to it. You can only attach stuff
to the red bones, so don’t worry about anything else.

Usually, each selectable limb will choose a single staticMesh that attaches to a
single bone (confusing sentence, yes?). However, there are some special cases:

- Ingame, players have a single selector for their torso. The torso is actually
comprised of up to 4 staticMeshes, which attach to the pelvis, spine,

spine1 and spine2 bones respectively. You do not have to use all of these
attachments, however the pelvis is compulsory if you are creating a torso
(your torso won’t show up if you don’t have one). Feel free to use or
ignore the other 3 bones as you see fit.

- The shoulder meshes (the ones that attach to the clavicle bones) are more
for shoulder pad sort of stuff and these are optional for players to choose.

All these attachments are optional for you as an artist when you create a
character. You are quite free to create as full or as limited a character set as you
wish. For example, say you don’t like the way a particular guy’s head looks –
well, create your own head and make a new character that is just a head. Your
new head choice will be added to the game so that players can access it as well.

Also note your ability to reuse objects. For example, say you are creating an
almost perfectly symmetrical character with simple cylindrical objects for thighs.
You could reuse this thigh object for both thighs, since it won’t change too much
from being attached to different bones. There are exceptions to this however, but
they are explained below where appropriate.

The main difficulty you are going to have when you do your modelling for MD:MR
is the scale and orientation of your actual meshes. Each piece needs to be in the
right position and rotation to attach to its bone properly and look convincing.

The skeleton that everything will be attaching to is, in fact, the default skeleton
for the bot characters that come with UT2004. I’ve included the bot skeleton in
this package in a few formats in case you want to use it as a reference for model
sizes, etc. Just make sure you size it to the correct scale so that your conversions
into unrealEd work out properly. More on that in the next few paragraphs.

Just to note, the bot skeleton will be animated differently when MD:MR is
finished, so things will move differently and with more awesome. You don’t need
to worry about any of that though, so let’s move on.

To begin, let’s explain some things.

- Lightwave uses a Y-up coordinate system. Unreal uses a Z-up coordinate
system. This means you have to rotate your meshes all weird in Lightwave
to get them to import into UnrealEd properly. The same is probably true of
other packages, but there’s always the possibility that your conversion
plugin will rotate them for you, so I’m not at all sure. The best bet here is
to do everything the exact same way as I describe it, then if things turn
out strangely later, go back and apply rotations to fix this for all your
objects. They’ll be simple 90° rotations anyway, and you can guesstimate
them just by looking.

- Unreal uses its own coordinate system, which will be different from what
your 3D program uses. So your meshes must be modelled at the correct
scale. For example, I thought it would be easy to use the bot rig as a
guide when I did my modelling. So I converted it from a 3ds max file into
a Lightwave object. However the scale was then all wrong. And its entirely
possible that whatever you use to get animated meshes into Unreal uses a
different scale than your staticMesh importer (I doubt it though). So, as a
guide, a character in UT2004 is approximately 96 unreal units high. I
found that when I scaled the bot mesh to that size things worked out
pretty nicely. You can always use this approach to template sizes if you
wish. Anyway, the rest of this tutorial uses Unreal Units as a
measurement. Conveniently, in Lightwave 1m = 1UU.

For the next part, I’m going to assume you know what youre doing when it comes
to modelling. If not, there’s some great tutorials on the UnrealWiki and UDN. I’ve
thought about the best way to show the orientations and scales of things, since
it’s really all you need to know, and I think the best way is screenshots of the
objects that make up the Robot test character. I recommend you keep your
originals in the orientation you are most comfortable with working on them and
then save separate files of the rotated ones. But hey, it’s up to you.

Each of the shots has 3 lines drawn on it to show the direction of the axes. They
point from negative to positive. Their colours are:
X – red
Y – green
Z – blue
These lines also radiate from the world origin (point at 0,0,0), since this will
convert across to the origin of the staticMeshes when they are ingame (basically,
the starting point of each bone your models are attached to).

Head

The head should usually be positioned at
the world origin, but because of the
robot’s long neck, his is positioned
higher. This means that with other
models his head will float a little off his
body, but these sorts of small
discrepancies will not matter too much in
the end and really only add to the
game’s idea of characters that are
‘loosely cobbled together’.

The head should be about 12-16UU
high.

Left Shoulder

These shoulder guards look like hands because the robot didn’t
come with shoulder pads and I couldn’t be bothered making
any.

In this image, the fingers curl back towards his back and the
thumb points inward, towards his ear. The model is positioned
above the origin so that the shoulder guards seem to join to his
chest instead of coming from inside it. It is also moved slightly
along the X axis so that the shoulder guards do not interfere
with his head. Basically, remember that the bones the shoulder
guards attach to are deep inside your characters neck.

Right Shoulder

The right shoulder is much the same as the left, however it is
mirrored in the Y axis. If you were to think about the way the
clavicle bones face, this must make sense. I just guessed
though.

Both shoulders should be about 8UU high, including their
offset from the origin.

http://udn.epicgames.com/Two/StaticMeshes
http://wiki.beyondunreal.com/wiki

Upper Arms

The upper arms are fairly straightforward. The
robot uses the same model for left and right upper
arm, though for asymmetrical characters one of
your arms might come out rotated 180° around the
X axis once it is ingame. This applies for most limb
appendages, so it’s a good rule of thumb if one of
your limbs is rotated lengthwise.
The upper arms should be about 15-17UU long.

Lower Arms

Lower arms are pretty straightforward again.
Remember everything I said about the upper arm,
but for lower arms their length should be about 13-
15UU.

Hands

Left
Right
The hands work about the same
as the shoulder pieces. For your
left, the thumb points up and
fingers point along Z. For the
right, the hand is mirrored on Y.

The right hand should be

modelled as if it is holding something, so that weapons can be attached to the
weapon bone and the character will look like it is actually holding it. Do what you
like with the left.
Hands should be about 7-10UU long.

Torso

The torso is certainly the most complicated, being that it is composed of many
different pieces. We’ll go through them on the next page.

Torso Parts

Pelvis Spine Sections Chest

All the torso sections face forwards along the Z axis. So in these images, you can
see the front of the model.

Pelvis
The pelvis is the lower piece, which will attach to the character’s pelvic bone. It’s
important to proportion the pelvis correctly so that the legs stick to it properly.
Remember that the pelvis is the only mandatory part of your character’s torso
(though you would probably at least have a chest piece as well :P)
The pelvis is about 8-11UU long.

Spine Sections
The spine sections are the middle sections of your character’s torso. You are
given the option of having 2 separate pieces, but to be honest, unless you really
want to fake smooth bending you’re only ever going to need to use the ‘spine1’
bone. The ‘spine’ bone is much lower down (almost as low as the torso), just so
you know. The ‘spine1’ bone is about half way between the pelvis and chest.
If you’re going to use both attachments, then they should start at the world origin
and go along the X axis in a similar way to the arm pieces. In this case, a good
length for each is about 3 or 4UU, but the lower piece should probably be a bit
smaller.
If you prefer the easier option of using the higher ‘spine1’ attachment, just create
your middle torso piece as in the diagram above, roughly centered on the world
origin. The top (+X axis) section should be a little longer than the bottom.
A good length for this second approach is 7-9UU.

Chest
There’s not much to say about the chest. It’s basically the same deal as the
pelvis. Just make sure it’s wide enough so that the arms hook into it in a realistic
way. Shoulder guards are also a concern, but they’re supposed to look floaty
anyway so it isn’t that important. Make sure you don’t make your chest too tall,
or you will have trouble with heads clipping through its neck (this is part of why
the robot model’s head floats away from other bodies but sticks nicely to robot).
A chest should probably be somewhere between 13 and 16UU.

Thighs
Nothing too fancy to see here. The thigh and shin
pieces are about the same sort of thing as the
upper and lower arms.

A good thigh is about 20-25UU.

Shins

Once again, nothing too special. Shins can be a bit
longer than the bone they are attached to, depending
on the way you want to do your foot. For most cases,
I recommend you make the shin the correct length
and have your feet rotating about their origin. The
feet in this case should be modelled as boots – ie
they should take some of the ankle into account. The
best test for feet is to look at your character when

standing still and make sure he is actually touching the ground :P

The robot does his legs the other way – his shins are a little longer, but his feet
are more flat and have no ankles. This means they are moved away from their
origin, as you will see next. Either way is fine, really, but combinations of these
two types of models might look silly (that’s good!).
A good shin should be 18-23UU.

Feet

Right Left
The feet are again, the same sort of
thing as the hands and shoulder
guards. Like I said in the shins part,
the robot feet are moved a bit away
from the origin, when most feet
would probably have an ankle-like
boot heading up there.

On the right foot, the big toe (if the robot had one) is on the underneath side. On
the left, the big toe is on the top.
A good foot is about 7UU from origin to base, and 10-15UU from toe to
ankle.

Texturing

Texturing is probably the easy part. I’m going to assume you’ve already UV’ed
your model and are ready to start texturing in whichever painting program you
prefer. For me, it’s Photoshop CS2, but that’s really a moot point.

The way you texture your models is entirely up to you. Use as many UVs per
model as you wish. Use many different textures, or use a single texture map for
all your models. It doesn’t matter, so long as you design your textures ingame in
the way outlined below. Just be mindful of the resources you’d be using if you
went and textured every limb with a 1024x1024 texture :P

The robot model, being somebody else’s work, came with textures for me so that
saves a bit of time writing this tutorial. He uses the one texture/UV for all the
different body parts, since he started off as a normal UT2004 character. Here’s
the initial texture:

Now, I chose to make all the blue parts of the
texture of configurable colour. You don’t
necessarily need to have a configurable area on
every different limb, but remember that the
whole point is to have enough custom colour
visible that a players‘ colour is apparent to
others.

So, to begin, the simplest thing to do is mask
out the areas youll be changing. In Photoshop, I
like to use the lasso tool, or just make a new
layer mask and paint on it if finer detail is
required.

The next step is to desaturate all the areas you want to change. If you’ve started
your character from scratch, youll probably just make those areas in grey and
white to begin with. But, I’ll talk about it anyway just in case. You must do this
for every texture you want to have custom colouring on.

Here’s the texture with the chosen areas desaturated. In
Photoshop, you can do this to the selected area just by
going Image>Adjustments>Desaturate. In other
packages, you might have to copy to a greyscale image
and paste back. Up to your chosen method anyway.

This will be the main diffuse texture your model uses (or
one of them if you use multiples). Save as a normal 24-
bit bitmap.

Now, copy the desaturated areas to a new image, and fill
in black behind them. This will be your masking image

for the custom colours to appear on. You might want to up
the contrast of this one so that its very hard black and
white, or the skin might look washed out later.

Save this file as a 32-bit targa image with the alpha
channel set to the same stuff as the black and white image
you’ve already created. (You can do this in Photoshop by
merging layers, copying everything, making a new channel
in the channels pallete and pasting it in again).

Putting it all Together

Ok, so now you should have a bunch of models and textures ready to import into
UnrealEd. You should start now by importing your textures, so that when you
import your staticMeshes, they can find everything they need to display properly.

When importing our textures you should setup the materials system properly to
take advantage of the colouring system. If you are comfortable with UnrealEd,
then you might want to go ahead. Basically, the skin is built as a Shader with
Combiner as its diffuse component. This combiner is made up of your diffuse
texture as material1, masking texture as mask, and material2 left blank (this is
important). Note that this step isn’t required if you don’t wish to use configurable
colours on your model. If you do (and you should), read on.

Fire up UnrealEd. Go to the texture browser. Choose File>Import and import the
textures you will need for your model. Give them a nicely named, unique texture
package that implies they are for your model (if you haven’t thought of a name
for your character now might be a good time).

For the masking texture, make sure the
‘Alpha’ box is checked. You should also
generate mipmaps for both. If your diffuse
texture has transparency in it (I don’t know,
maybe you are making feathers or hair or
something), you’ll want alpha for that as
well.

Feel free to use a grouping if you want – it’s only for organisation and just means
more typing for you later on. If you’re making more than one character you can
of course put everything in a single package (both for textures and staticMeshes),
so in such a case grouping might be handy.

Ok, so now both your textures are in UnrealEd. They’re taking up a lot of space
though, so let’s fix that. Right click on one and select ‘Compress’. You will see
DXT1, DXT3 and DXT5 options. DXT1 is best for textures with no transparency,
and gives the best compression. DXT3 is for textures with simple alpha (think GIF
files) and gives medium compression. DXT5 gives the lowest compression, but
features full alpha. You’ll probably want DXT1 for your main texture and DXT5 for
your mask. But if you’ve done different things just choose what fits best.

Now your textures are taking up a fraction of their former space, and people will
have less trouble downloading them. Next step is to build your shader.

Choose File>New.
Choose
‘Engine.Combiner’
from the list. Give it a
good name and make
sure it’s going to be
created in your current
package.

The following screen will pop up:

Set the following:

CombineOperation = CO_AlphaBlend_With_Mask
AlphaOperation = AO_Use_Mask

Now click on the ‘None’ word next to
‘Material1’. Move the combiner
properties out of the way and find your
normal diffuse texture in the texture
browser. Select it (when selected, a grey
rectangle should be behind it). Now go
back to the combiner properties and
press ‘Use’. Your combiner’s material
tree (the graph like thing at the top
right) should now look like this �

Do the same for the ‘Mask’ property, this time selecting your masking texture.
You should be able to see something in the material preview window now.

That’s it for our combiner. Make sure its material2 property is left blank – this is
how the shader system knows to recognise it as a compatible texture (why would
anyone else use a combiner without a second material to combine?).

Go back to the texture browser. Your combiner should be in there now,
designated with a green border around it. It should basically look the same as
your base texture, with slightly brighter areas where you have masked.

Now, go to File>New again, and this time select ‘Engine.Shader’. Its properties
window will now come up. Set its ‘Diffuse’ property to the combiner you have just
created, in the same way as when you set combiner properties up before. You’ll
now have something like this:

You’re done. That’s everything you need to take advantage of the MD:MR
materials system. You can save your texture package now – by default it will go
into the UT2004/Textures folder. For the character testing system though,
you’ll need it to be in UT2004/mduelCharDesigner/Textures. Save it there
now or move it later, it doesn’t really matter.

If you’re feeling advanced, you can go nuts and add in other things to your
shader like specular, self illumination etc. That’s up to you though.

On to the staticMeshes!

Importing these is much less complicated than the textures. If you’ve named
everything correctly, you should be able to simply import them and everything
will link up. Your texture package must be loaded however, or else they won’t be
able to find the right textures.

For Lightwave, simply go to the staticMesh browser and select File>Import,
then point to your LWO files. For other 3D programs, follow their respective
instructions.

Make sure your staticMesh has its materials set to the shader you designed
above. You could do this automatically by naming your surfaces in Lightwave so
that they match up with the correct texture in UnrealEd, but for me I prefer the
security of doing it myself anyway. You can select a staticMesh’s materials the

same way as you selected textures for the combiner above. Just select your
shader in the texture browser, then go back to the staticMesh browser and hit the
‘use’ button.

To see the texture applied to your staticMesh in real time, you should press the
‘!’ button at the top left of the staticMesh view window. You will probably also
need to rotate and move the camera around to see your mesh, since it’s going to
be really small in comparison to the staticMeshes used for level geometry.

If your staticMesh uses more than once surface, just expand the ‘Materials’
property at the bottom of the window and choose the relevant shader for each
piece.

When you’ve done all the relevant meshes you need, just save the package in the
proper place (should be UT2004/mduelCharDesigner/StaticMeshes).

Now you have all your assets ingame and ready to use. The next steps involve
telling the game where your meshes are located and how to use them. Once
you’ve done this, you needn’t do it again a second time around. Let’s say you find
out your head is too small. Well, just go back and change it, then import it over
the top of your old head in the staticMesh browser. The game will just use the
new head in place of the old one.

Ok, so to begin, you must make a new folder under the
‘mduelCharDesigner’ folder in your UT2004 directory.
This will be the name of the *.U package you end up
creating for your model, so give it a meaningful name.

Under this folder, create another folder named ‘classes’.
This is where you will make a simple text file to load all
your model’s staticMesh pieces.

Now create a new text file in your classes folder. Rename it to whatever you like
(but NO SPACES! And no starting with a number!), and give it the extension *.UC
instead of *.TXT (if you’re hiding file extensions I think you’ll need to show them
in order to do that).

Open up said text file in whatever text editor you’re most comfortable with. I
personally prefer UltraEdit, but I’ll do this exercise in notepad (shudder) since
everyone has it.

Copy and paste the following text in:

class WHATEVER extends duelerInfo;

defaultProperties
{

attachmentActors(0) =StaticMesh'' //head
 attachmentActors(1) =StaticMesh'' //rshoulder
 attachmentActors(2) =StaticMesh'' //lshoulder
 attachmentActors(3) =StaticMesh'' //rupperarm
 attachmentActors(4) =StaticMesh'' //lupperarm
 attachmentActors(5) =StaticMesh'' //rlowerarm
 attachmentActors(6) =StaticMesh'' //llowerarm
 attachmentActors(7) =StaticMesh'' //rhand
 attachmentActors(8) =StaticMesh'' //lhand
 attachmentActors(9) =StaticMesh'' //rthigh
 attachmentActors(10)=StaticMesh'' //lthigh
 attachmentActors(11)=StaticMesh'' //rcalf
 attachmentActors(12)=StaticMesh'' //lcalf
 attachmentActors(13)=StaticMesh'' //rfoot
 attachmentActors(14)=StaticMesh'' //lfoot
 attachmentActors(15)=StaticMesh'' //hips [MANDATORY FOR CHEST!]
 attachmentActors(18)=StaticMesh'' //lower spine
 attachmentActors(16)=StaticMesh'' //upper spine
 attachmentActors(17)=StaticMesh'' //chest

setName="My Characters Name"
}

Ok. Replace ‘WHATEVER’ with the name of your new file (without the .UC at the
end). Now you simply have to add in the names of your staticMeshes that make
up the character’s body. The notation used is Package.Group.Mesh. So, for the
robot character, his head is defined like so:

attachmentActors(0) =StaticMesh'charRobot.robot_head' //head

Notice there is no group part since I did not use any groups when I imported. If
you can’t remember the names of things, you can just open up your staticMesh
package again in UnrealEd and select the meshes - it will give you the full path to
them at the top of the window.

This system is perfectly open to you. If you don’t wish to specify a mesh for a
particular limb, just delete the relevant line. For example, the robot has no lower
spine attachment, so I delete the line
‘attachmentActors(18)=StaticMesh'' //lower spine‘.

Remember, you can also reuse the same mesh for different parts. To do so, just
use the same path multiple times. Another example from robot:

attachmentActors(3) =StaticMesh'charRobot.robot_armUpper' //rupperarm
attachmentActors(4) =StaticMesh'charRobot.robot_armUpper' //lupperarm

So now you have set up a reference to your meshes. Also remember to change
the last line (setName="My Characters Name") so that your character has a unique
name. This is the name that will show up in the menus when players select body
parts from your character. Make sure you keep the double quotes in!

You must now compile this *.UC file into a *.U file.

Go into the ‘System’ folder inside mduelCharDesigner. If the file
‘mduelCharDesigner.ini’ exists, delete it. The game will make a new one in a
minute anyway. Open up ‘default.ini’ in notepad or another text editor.

Add a line to the [Editor.EditorEngine]
section as shown. The ‘robotCharacter’ part
shown here should be the name of the
folder you first created to put your ‘classes’
folder and *.UC file in.

Save the file and close it.

Now you are ready to compile your *.U file. Note again that if you are creating
multiple characters, you can have more than one *.UC file inside your folder to
compile (one for each character).

Anyway, simply go to the root of your ‘mduelCharDesigner’ folder and run the
compile.bat file located there. If you did everything properly, it should spit out a
heap of junk and then say ‘0 errors, 0 warnings’. If not, it will tell you the line you
messed up on so you can go back and fix it. Press enter to close the window it
made.

Now you should have a *.U file in your mduelCharDesigner/system folder. The
last step is to tell the game to look in this file.

Create another new text file, this time in your mduelCharDesigner/system
folder. Rename it like you did for the *.UC file, but give it the extension *.INT.
Open it up in your text editor and paste the following in:

[Public]
Object=(Name=PACKAGE.CLASS,Class=Class,MetaClass=mduelGame.duelerInfo)

You now need to change ‘PACKAGE’ to the name of the folder you created before
(for me it is ‘robotCharacter’) and ‘CLASS’ to the name of the *.UC file you
created. So the robot character has something along the lines of this:

Object=(Name=robotCharacter.DUELERRobot,Class=Class,MetaClass=mduelGame.duelerInfo)

If you’ve got more than one character, again, just add in more ‘Object=’ lines,
one to reference the *.UC file of each character.

Save your *.INT file. That’s it! Everything should show up ingame now!

The Character Designer

So you’ve gotten this far. Everything you need to do to create an MD:MR
character is finished. But how to you see what it looks like ingame?

Go to the ‘mduelCharDesigner’ folder in your UT2004 directory. Run the
‘MDMRCharacterBuilder.bat’ file. This will load up UT pretty normally.

On the main menu screen, click on ‘Settings’ to take you to the settings page:

It should be pretty obvious what to click on next. The character designer brings
up this screen:

You use the ‘character color’ slider at the top to change the custom colour of your
character. The selection boxes laid out below let you choose the different body
parts for testing. The robot character is included by default, so you can mix and
match him with your creations to see how things work together.

Of course this isn’t much of a way to see how your character looks, so when
you’re done, just go back to the main menu. Your choices will be saved.

Now, head to an instant action game (other things might work a bit, but probably
not very well at all since that code isn’t done yet). Choose ‘Simple UT DM Test’
as your gametype (nothing will happen if you don’t do this). Take out all the bots
(they’ll just get in the way) and start a new game.

You should see the character choices you made before reflected in the guy
standing in front of your camera. Note that there is a small bug at the moment
that I was too lazy to fix – your character will load shoulder guards the first time
you play even if you have specified ‘none’. To correct this, go to the settings
menu, switch to some guards, go back to the game, then go back to settings and
switch to none again. They should be gone now :P

You can change your character’s appearance as you play, without disrupting
gameplay. You can also use the following keys to get a better look at him (and
take cool screenshots if you really want to).

I : Disable free camera
O : Enable free camera
P : Show/Hide hud

And that’s the end! If some things look a bit iffy, just go back and reimport them
over the top of the old assets. That way, you don’t have to update anything else.

If you create a custom character and would like it featured in our mod when it is
released, you can either email pospi with details using the email address at the
top of this document, or post it at the Marshmallow Duel : Mowbray's Revenge
forums.

Read on to see the necessary steps involved in distributing your character.

http://mduel2k5.spadgos.com/forum/index.php
http://mduel2k5.spadgos.com/forum/index.php

Distribution

There are essentially three groups of files you need to distribute to people in
order for them to be able to use your models – Textures, StaticMeshes and
System files.

Below is a simple directory structure showing you which files you must include in
your character download.

UT2004
 StaticMeshes
 Any *.usx files with your models inside
 System
 Any *.int and *.u files your characters use
 Textures
 Any *.utx files with your textures inside

Credits

‘BotC’ character model source file © Epic Games

‘Robot’ model created by Michael Lane -
http://student.ci.qut.edu.au/~n4416295/folio_main.htm

Marshmallow Duel : Mowbray’s Revenge is based on the Marshmallow Duel game
originally created by Duncan Gill in 1996.
Please visit www.marshmallowduel.com for more about this classic game!

http://www.marshmallowduel.com/
http://student.ci.qut.edu.au/~n4416295/folio_main.htm

