
This is a mapping tutorial for the UT2k4 mod Marshmallow Duel: Mowbray's revenge. It assumes 
you have experience with unrealEd already.  
 
There are several main parts that make up a typical mduel map which set it apart from a normal 
UT map. These are smash platforms, pickup spawners and their pickups, climbable ropes, and 
the all important deadly marshmallow at the bottom of the map. All of these elements are 
optional, but most of these are pretty important for it to really be a Marshmallow Duel level.  
 



SMASH PLATFORMS 
 
The platforms and main playing areas are usually made up mostly of Smash Platforms. A Smash 
Platform is a new actor which is basically a static mesh with some added logic that allows it to be 
destroyed by grenades and tnt, and respawn after a certain period of time. Although the game 
options also allow for setting smash platforms to not respawn, which you should keep in mind 
when building levels. Of course, you can still build playing areas with BSP, regular static meshes 
and terrain to add variety, however some if not most of the action should take place on these 
destroyable meshes above the Marshmallow.  
 

To place a smash platform, go to the Actor browser and find the smashPlatform actor. It's usually 
near the bottom of the list. At this points its probably worth noting that you need to open unrealed 
with the 'runUnrealEd.bat' file, so that unrealed is opened with the mduel settings and actors 
loaded. Or you can just type it in yourself i think its just "unrealEd.exe -mod=mduel". 
 
Anyway if you select the actor, then right click where you want to place it as usual, and place the 
smashPlatform Actor. You should get the default Marshmallow Duel grey square platform mesh. 
From here you can just start placing your platforms, or you have a few options; you can play with 
the smashPlatform settings or change the static mesh used.  



The only smashPlatform setting at the moment is 'hiddenTime' which gives you an option to 
change the time, in seconds, it takes for the smashPlatform to reappear after it has been 
smashed. This is under smashPlatform properties, and go to the smashPlatform submenu. The 
default is 2 minutes.  
 
To change the static mesh, just go to the Actor's properties and to the 'Display' submenu. In here 
there is a parameter with the name of the mesh that is being used, you can just select from the 
static mesh browser, go back to the properties and click used, your smashPlatform should 
change straight away to the new mesh. If you plan on using the meshes that come with 
Marshmallow Duel for your level, the package is 'mduelGameStatic', there are a few variations on 
the classic grey platform available in the 'Classic' group, as well as some catwalk and glass brick 
meshes in the 'New' group.  
 



There are also some tree trunks, branches and mallow blob meshes which have been used to 
make destructable marshmallow trees in a few of the maps that come with the game. These are 
good for adding some interesting variation, which is able to be destroyed piece by piece, although 
it can be a bit awkward for the player to use as platforms.  
 
Which brings me to collisions. If you are importing your own static mesh, you should be careful 
about the collision settings. Obviously you can use the default colisions of the static mesh itself, 
although this is not very good for performance and could slow down your map. Ideally you want a 
flat surface on the top surface of the collision box, where the player is going to walk. If you have 
curved surfaces at the edges this can interfere with the player or pickup physics, especially the 
player's rolling. Even though you might use some static meshes with more complicated surfaces, 
it is best to use flat collision box surfaces when possible. 
 

Good collision 
 



Bad collision 
 
There is an additional type of smashPlatform, known as the smashPOWform. Youll find it under 
smashPlatform in the actor class browser. This is a bit of a gimmick item, and we really 
recommend that you don’t use it unless you really know what youre doing and are sure it won’t 
render your map unplayable. It works the exact same way as a smashPlatform, except that 
destroying it will destroy every single smashPlatform in the level. 
 
PICKUP SPAWNERS 
 
Pickup spawners are an important part of your mduel map. They are little metal fork things from 
the original Marshmallow Duel, which (as is obvious) spawn the floating pickups in the game. You 
place these in the same way as smashPlatforms, the actor name is 'mduelPickupSpawner' and it 
should be in the list one above smashPlatform.  
 
You can put them wherever you want, but you might want to consider their relation to player 
starts and fairness etc. Or you might not, if you don't like being fair. Once placed, the rotation of 
the pickup spawner will have a significant effect on which direction the pickups fly out in, although 
it is somewhat random. In 2d maps, you will want your pickup spawners on the same plane as 
your playerstarts at y=0, and you should keep them pointing along that plane and then the 
pickups should not float out of the player's range. 
 



You have several options for customising pickup spawners. To edit them, right click the spawner 
you have placed, and go to the mduelPickupSpawner submenu.  
 
defaultPickupType is used to change the pickup type that the spawner will produce. If you set it, it 
will only spawn that pickup type. This can be a powerful feature for controlling what happens in 
your map, but it should not be overused, as we have tried to leave the gameplay rather open 
ended. In the game settings, players can set the types of pickups they want in a game. This does 
not override the defaultPickupType settings however. This sortof thing is useful if you want to 
make a custom type of map. For example if you were making a Marshmallow Duel hockey map, 
with pucks and shields, you would only want a spawner producing pucks, and another producing 
sheilds, giving you enough control to set up the kindof gameplay you want. In a normal 
straightforward mduel map you wouldn't really want to use it, unless you are using them in hidden 
areas where you want a certain type of pickup to be available.  
 
maxPickups sets the maximum amount of pickups. Usually you want this setting on 1, as we 
allow players to set the pickup multiplyer in the game options, from 1 to 10, to set the amount of 
pickups they want each spawner to produce. If you need a spawner to produce heaps of pickups 
in a certain area, you might want to raise the maxPickups number. The best thing to do though is 
try and design a map which is playable with sparse pickups when they are set to 1, with spawners 
maxPickups set to 1. The recommended number for the multiplyer is usually 3, and you can 
suggest this in your level summary. This allows players to set huge amounts of pickups if they 
want to play the game like that, which might make it easier if they have trouble catching them in 
3d maps.  
 
maxSpeed and minSpeed simply control how fast the pickups will move in the game. The 
spawner picks a random nubmer between the min and max and that sets the speed of the 
pickups. So the closer the settings, the less variance in pickup speed. The magnet will speed up 
pickups when it attracts them, however they will eventually slow down to their original speed. 
 
respawnTime sets the time between spawning pickups when your spawner is making more than 
one. New pickups are always spawned once the old ones die. 
 



CLIMBABLE ROPES 
 

Climbable ropes are a pretty straight forward concept, but can be tricky to get into the right 
position as they wont show up in the 3d viewport. Like everything else, they are an actor, so 
select 'climbableRope' from the actor browser and right click and place them in the map. It should 
be a little above mduelPickupSpawner in the actor list. You will get a short rope, best viewable 
from the front and side viewports. To make it longer, simply change the drawscale property on the 
Z axis, and line it up with your platforms or wherever. In the top view you will only see a small 
square.  
 
To make the ropes look less ugly when they finish in the middle of nowhere, we usually use a 
climbableRopeCap, which is just a little ball that caps off the top of the rope. You can use the 
default static mesh from the mduelGameStatic package, or use your own.  
 



A capped climbable rope in 4 different views, the rope itself wont show up in 3d viewport. 
 
There are several configureable properties for climbableRopes, but there isnt much you'll want to 
change (unless you want them to break). Firstly, you can't change the static mesh of the rope or 
you will break it. You can change the skin of the rope, but changing the skinType setting. At the 
moment you have a choice between Rope, Vine, and Cable. Custom types of skins at the 
moment can not be made by the end user.  You wont actually be able to see the effect of 
changing the skin type untill you view the map in game. 
 
You can change the actual direction of climb on the rope, however it can be tricky to do. You will 
need to rotate the actual object, and also set the ClimbDir setting to the right rotation, or your 
players will climb along the rope and then fall off where their angles start to differ too much. This 
could be useful if you want to have several ropes converging at the top of an area, as if they are 
held back at the corners instead of simply hanging straight down. Or if you are trying to make 
some kindof crazy confusing map. Changing the climb direction is not recommended, unless you 
really know what you are doing.  
 
extraDist is something you probably wont want to change. The default is 5, and this represents 
the area around the rope which the player can grab onto.  
 



MARSHMALLOW  
 
Being Marshmallow Duel, it is typical to have a big pool of Marshmallow at the bottom for players 
to fight over. This is usually done with a straight forward fluidSurfaceInfo. You can use the  
Marshmallow shader that comes with the mod, from the mduelTerrainTex package, or you can 
make your own. The Shader is set to be double sided, so you wont see through the Marshmallow 
once you go under and FIDs. It is also important to set a physicsVolume with damage, or a killZ in 
your level and zoneInfo properties. With the physics Volume you can also set gravity and friction 
settings to make it appear like you are floating in viscous Marshmallow. However when using the 
physicsVolume to kill the player it is important that you only set the DamageType to 
damTypeFIDS, fell or drowned, as other settings can give wierd unwanted effects.  
 

A physics volume under a fluid surface with correct damage type set 
 



THE WARP PICKUP 
 
The warp pickup in the original mduel game allowed players to warp to random locations. 
Obviously UT is much more complicated than a 320 pixel 2d side scroller, so the new warp 
pickup doesn't pick random locations. Instead, the warp pickup will pick randomly from 
'pathNodes' placed in the map. PathNodes are in the actor browser, and should look like a little 
delicious apple when placed.  
 

The delicious pathNode apple set to warp player onto smash platform 
 
This is an interesting way to do it over randomness becuase it allows you to put them in 
interesting places. You might want to place the warps in hidden areas, or over smashplatforms 
which may or may not be there when the player warps, or you might want to be mean and place 
them right above the Marshmallow. Be creative with your warps and try to make it interesting. 
 
It’s probably not a good idea to run the ‘Build All’ command once you start dropping these in, as it 
will calculate your bot pathing which is really unnecessary since MD:MR doesn’t support bots at 
this time. 
 



BLOCKING PICKUPS AND THE PLAYER 
 
Blocking volumes can be used to block the player, to keep them within the defined field of play, 
but you can also use them to block the pickups and keep them from floating away into the distant 
heights of the map. You may have areas you want the player to reach, IE to be able to jump high 
at the top of the map, but place the blocking volume for the pickups slightly lower so that you 
keep them in more reachable areas. 
 
To set a blocking volume to block pickups, set the 'bClassBlocker' to True, and set a 
BlockedClasses item to 'mduelPickupBase' (select from the drop down list). mduelPickupBase is 
actually the base class of all the pickups. If you are trying to do someting creative  with blocking 
volumes you could also block individual pickup types.  
 
Blocking volumes should also block the grappling hook projectile as well, stopping players from 
climbing to the very top of the map if you don't want them to do that (ie clmbing to the fake 
backdrop in an open sky map) . If you have any trouble with this working you can also just set the 
blocked class to 'projGrapple'.  
 
It is also a good idea to put a blocking volume in the Marshmallow Pit so that pickups appear to 
bounce off the Marshmallow instead of dissappearing into it and reappearing later. This is easy to 
do, however make sure that 'bClampFluid' is set to False, or else it will mess up your 
fluidSurfaceInfo. 
 



PLATFORM SPACING 
 
When placing your smashPlatforms, you will need to consider the usual jumping distances of the 
player. Usually a player can jump comfortably from one platform to another about 192 units above 
it. However if you have 2 layers of platforms, the player will also hit their head on a platform this 
close above it. It's important to make platforms a decent distance away when jumping upwards, 
as if they don't reach their full jump height in time, they may hit the platform and roll back, which 
might make them unstable and fall into the drink. Of course, you might want this to happen i dont 
know.  
 
Platforms need to have flat top surfaces, becuase it makes it difficult for the game to know if the 
player can roll or not on the surface if it has a curved or angled edge. You can tilt platforms, 
although its probably not a good idea to have them to steep or the player's movements might get 
confused. 
 
If you are making a larger platform out of smaller ones next to eachother, as in most of the 
Marshmallow Duel main maps, it is best to keep the smaller platforms touching eachother, 
without gaps between them, as this could interfere with the puck, and other algorithms in the 
game.  
 
When you have a climbable rope, climing from one platform to platforms above, you have to be 
careful that platforms at either side of the rope are not going to hit the head of the player when 
they are climbing up, as it can prevent them from getting up. Just leave a space of at least 32, 
maybe up to 64 either side of the rope to allow the player up. The rope should also extend some 
distance above the platform they are trying to reach, so that they can jump down from the rope 
onto the platform.  
 



Some platforms placed in a 2d map, no gaps between platforms, enough distance between rope 
and platform, jumping height correct, and player wont hit head on top platform when jumping from 
bottom platform to middle platform. If you use a grid size of 16, 1 and a half dark grid squares is a 
good height between platforms.  
 

2D GAMETYPE 
 
As mentioned breifly before, in the 2d gametype everything needs to be placed on the same 
plane, at least anything that the player is supposed to interact with. Player starts should be placed 
along the x axis at y=0, at any x or z location, same as pickup spawners, ropes, and the part of a 
platform you want the player to walk on. You can of course have plenty of things going on in the 
background to make the game more interesting, and you can have platforms running against this 
plane for effect.  
 

Top view of 2d map, everything in a line on the right plane. Slight variance of player start y 
position shouldn’t make a difference, so you don’t have to be too pedantic.  
 

When making your 2d map, you will need to carve out enough room in the front of the map so 
that you can see what is going on, if you have any walls in the way in front, you might not be able 
to see the action. I think the camera is at least roughly 600 units away from the plane where all 
the action is. You can put objects in the foreground, which can add interesting detail to your map. 
Sometimes when the player dies, he might move somewhat off his normal plane. You might want 
to allow for this so that the view does not go wierd when it moves back even further. You can just 
cut out more space. You also need to take care when players reach the sides of the map, as their 
view can extend further around the side. If you have anything out the side such as the edges of a 
fluid surface, they might be able to see it, so you might want to cut away a wall in front of the 
viewing plane.  
 



2d map with extra space cut away in front of main playing area.  
 
Marshmallow Duel also provides a fixedCamera2D actor to use in your 2d maps. Select it from 
the actor browser and place somewhere in front of your 2d plane. You can put the camera 
wherever  but it may prove unplayable if you can't see platforms which are too far away from the 
camera. This is why the fixed camera is suited more for small 2d maps. The rotation of the fixed 
camera actor represents the view of the actual camera in game.  
 

RANDOM LEVEL GRIDS 

There is an additional actor at Actor/RandomLevelGenerator2D which you can use to randomly 
generate grids of smashPlatforms and climbableRopes. You can make an entire level out of one 
or more of these, or use them as small sections of randomness in a larger level. This actor is 
recommended only for 2D levels as it will only generate a plane of platforms. 
 
Simply place the actor into the level and rotate it to the direction you want the grid to face. The 
actor will serve as the bottom corner of the grid, with the tiles coming out in the direction of the 
rotational arrow. 
 
The actor comes with many options to configure the grid. They are as follows: 
 
platWidth 
The width of the platform staticMesh in UUs. With the default mesh, this is 80. Youll need to 
change it if you want to use a different model for your platforms. 
 
platVSpacing 
The vertical distance in UUs between consecutive levels of the grid. The default is a good value 
as it allows players to jump up to the next level. If you have very thick platform meshes or just 
want to change things up a bit, modify this value. 
 
minSpan & maxSpan 
Minimum and maximum number of platform meshes to have in a composite platform. Platforms 
will be made up of a random number of smashPlatforms between these two values. 



numRows & numCols 
numRows is the number of levels that will be in the grid. The overall height of the grid will be 
numRows * platVSpacing. Similarly, numCols is the number of tiles wide the entire grid will be. 
The overall width is numCols * platWidth. 
 
rowFullness 
The cutoff at which rows will stop being filled, as a percentage. Think of this as the average 
density of the grid. 
 
reservedCols 
Use this handy array to specify columns that will never get platforms or ropes placed in them. 
Handy for when you have non-random ropes hanging through the field for a sure place to climb 
up or down. The numbers specify the nth column from the generator actor, where 0 is the first 
one. 
 
platformTime 
How many seconds the platforms should stay hidden for if destroyed. 
 
platformMesh 
The staticMesh that all the platforms will use. Remember to set platWidth if you use a different 
one than the normal mesh. 
 
minropes & maxRopes 
The min and max number of ropes that will be in the field. Ropes will never exceed their capacity 
or get placed too near to other ropes as specified with ropeSpacing, so note that you will not get 
as many as you specify if you expect too high a number. 
 
ropeSpacing 
Number of blank tiles between each rope. 
 
minRopeHeight & maxRopeHeight 
Min and max values for the height of the ropes, as the number of vertical spacings to span. 
 
ropeSkinType 
The skin style of the ropes, as you would normally specify when placing ropes individually. 
 

The End.  
 

Chris Grist 
24 Oct. 2005 


